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It has been suggested that in a rapidly rotating fluid sphere, convection would be in the 
form of slowly drifting columnar rolls with small azimuthal scale (Roberts 1968; Busse 
1970). The results in this paper show that there are two alternative convection modes 
which are preferred at small Prandtl numbers. The two new convection modes are, at 
leading order, essentially those inertial oscillation modes of the Poincare equation with 
the simplest structure along the axis of rotation and equatorial symmetry: one 
propagates in the eastward direction and the other propagates in the westward 
direction; both are trapped in the equatorial region. Buoyancy forces appear at next 
order to drive the oscillation against the weak effects of viscous damping. On the basis 
of the perturbation of solutions of the Poincart equation, and taking into account the 
effects of the Ekman boundary layer, complete analytical convection solutions are 
obtained for the first time in rotating spherical fluid systems. The condition of an inner 
sphere exerts an insignificant influence on equatorially trapped convection. Full 
numerical analysis of the problem demonstrates a quantitative agreement between the 
analytical and numerical analyses. 

1. Introduction 
The subject of rotating fluid dynamics contains two important but traditionally 

separate branches : inertial oscillation and convection. Inertial oscillation usually 
describes the motion of an inviscid fluid in a rotating fluid container, influenced weakly 
by viscous dissipations that mainly occur in boundary layers. Convection in a rotating 
fluid container usually concerns the fluid motions driven by external forces such as 
thermal buoyancy, and internal viscous dissipations often play a key role in determining 
the basic properties of convection. Both inertial oscillation and convection in rotating 
spherical systems have been extensively investigated. 

Inertial oscillation in rotating systems is governed by the PoincarC equation, 
solutions of which for a sphere, with the general implicit form in modified oblate 
spheroidal coordinates, have been available for a long time (Bryan 1889; Lyttleton 
1953). If the fluid viscosity is completely neglected, the solutions must satisfy only the 
inviscid boundary condition. Most of the earlier research results concerning this 
problem can be found in Greenspan (1968).The convincing experimental studies by 
Aldridge & Toomre (1 969) demonstrated the existence of inertial oscillations in 
rotating spherical fluid systems. Also, a variation principle was used by Aldridge (1972) 
for obtaining the axisymmetric solutions of the PoincarC equation in a thick spherical 
shell; the important application to the dynamics of the Earth’s fluid core was discussed 
by Aldridge & Lumb (1987). In recent studies on the form of the inertial waves (Zhang 
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1993), it was revealed that the fluid motions described by the Poincart equation, with 
a sufficiently simple structure along the axis of rotation and small azimuthal scale, must 
be trapped in an equatorial-waveguide tube with characteristic latitudinal half-width 
(2/rn)n and radial half-width (l/m), m being the azimuthal wavenumber. As a 
consequence, the boundary conditions at the inner spherical surface and at higher 
latitudes are of secondary significance. 

For the problem of convection, an additional equation governing the supply of 
energy is required. Convection in a rotating spherical system in most cases is driven by 
buoyancy forces; the formulation of the problem and the earlier research results were 
presented in Chandrasekhar (1961). The fundamental theoretical work on convection 
in rapidly rotating spherical systems was carried out by Roberts (1968), Busse (1970) 
and Soward (1977). It was predicted that convection would be in the form of slowly 
drifting columnar rolls with small azimuthal scale, but the precise structure of the 
convection was not determined by the theories. Experimental studies by Carrigan & 
Busse (1983) confirmed the qualitative features predicted by the theories for the Prandtl 
number of the working fluid (water at room temperature, Pr G 7). Recent 
investigations (Zhang & Busse 1987; Zhang 1992) suggest, however, that the form of 
the convection pattern is dependent on the size of the Prandtl number, which is a 
property of the fluid. A comprehensive review of convection in rotating spherical 
systems can be found in, for example, Fearn, Roberts & Soward (1988) and Proctor 
(1994). 

This paper represents an attempt to link the two traditionally separate branches of 
rotating spherical fluid systems - inertial oscillation and convection - and is mainly 
concerned with convection modes that are in addition to the slowly drifting columnar 
mode predicted by Busse (1970) and the spiralling mode recently studied by Zhang 
(1992). It is discovered in this work that, at leading order, a particular class of inertial 
oscillation modes described by the Poiricari equation are the preferred convection 
modes at small Prandtl numbers. It is at next order that buoyancy forces drive the 
oscillation against the weak effects of viscous dissipation in the Ekman boundary layer. 
Analytical convection solutions are then obtained on the basis of the perturbation of 
solutions of the Poincare equation and taking into account the effects of the Ekman 
boundary layer. Full numerical analysis of the same problem demonstrates a 
quantitative agreement between the analytical and numerical solutions which are 
obtained at precisely the same parameters of the problem. It is also shown that the 
existence of an inner sphere exerts an insignificant influence on equatorially trapped 
convection. 

The primary objectives of this paper are thus threefold: (i) to establish a link between 
oscillation modes of the Poincari equation and linear convective instabilities in 
rotating spherical systems by an accurate numerical analysis of the full equations; (ii) 
to set up a linear perturbation theory on the basis of solutions of the Poincare equation 
so that analytical convection solutions can be found; and (iii) to compare the results 
of the numerical analysis with those obtained from the perturbation theory. In the limit 
of Pum-; < E, E being the Ekman number, a complete analytical solution for 
convection - the critical parameters for the onset of convection, and the structure of 
the flow and temperature - is obtained analytically in closed form. Outside this limit, 
an expansion in spherical Bessel functions is used to obtain approximate solutions of 
the heat equation. It is then shown that a small number of terms in the expansion gives 
rise to an approximation with better than 1 Y” accuracy. A reasonably satisfactory 
quantitative agreement between the analytical results for a full sphere and the 
numerical results for a thick spherical shell is reached. 
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2. Mathematical formulation 
Consider a Boussinesq-fluid spherical shell with constant thermal diffusivity K ,  

thermal expansion coefficient a and kinematic viscosity v that is rotating uniformly 
with a constant angular velocity f2 in the presence of its own gravitational field 

g = -yr, (2.1) 

where y is a constant. A traditional heating model (Chandrasekhar 1961) is adopted, 
in which the basic temperature gradient, 

V K  = -pr ,  (2.2) 

where /? is a constant, assumes a uniform distribution of heat sources. Using the 
thickness of the fluid shell, d = r, - ri ,  as the lengthscale, d 2 / v  as the unit of time, and 
/?d2v/K as the unit of temperature fluctuation of the system, the problem of convective 
instability, which was first formulated by Chandrasekhar (1961), is governed by the 
following equations : 

iou+2k x u = - 
E VP+ R(l -7)40r+-  (1 - 11)2 V2U, (2.3) 

where k is a unit vector parallel to the axis of rotation, 7 = r i / ro ,  and u is the three- 
dimensional velocity field, (ur, ug, uq), in spherical polar coordinates in the form 

For a convenient comparison with the standard form of the Poincare equation, the 
frequency w in (2.3) and (2.5) is scaled by the rotation rate 0. The temperature 
deviation from the purely conductive state, T,, is represented by 0, and the non- 
dimensional parameters - the Rayleigh number R, the Prandtl number Pr and the 
Ekman number E -  are defined as 

The Rayleigh number R is effectively the ratio of destabilizing forces to the Coriolis 
and dissipative forces, the Prandtl number Pr provides a measure of the relative 
importance of viscous and thermal diffusions and the Ekman number E is related to 
the ratio of viscous forces to the Coriolis force. In comparison with the definition of 
the Rayleigh number given by Chandrasekhar (1961) (see also Zhang 1992), Rch, our 
Rayleigh number R is normalized by the Ekman number, that is R = ERch, to avoid 
large numerical values of the critical Rayleigh number in the case of small Ekman 
number. The velocity boundary conditions assumed in this paper are stress-free and 
impenetrable, which give 

at the inner and outer bounding spherical surfaces. While the stress-free boundary 
conditions are appropriate for application to atmospheres, they preclude application 
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to the Earth’s fluid core. However, we may expect that the Ekman boundary layer with 
the non-slip condition would make the adjustment over a short distance with little 
effect on the interior convection. Perfect thermally conducting boundaries impose the 
following conditions : 

Equations (2.3k(2.5) with boundary conditions (2.7) and (2.8) form a convective 
stability problem which is solved both numerically and analytically. In the numerical 
analysis, an inner sphere with 7 = 0.2 is focused on because this value is close to zero 
but large enough to allow our numerical solutions to converge rapidly, while the other 
values of 7 are also used to show that solutions are hardly affected by the presence of 
an inner core at sufficiently large wavenumbers; in the perturbation analysis a full 
sphere is considered by setting 7 = 0. 

O(ri ,  $,O) = O(ro ,  $,O) = 0. (2.8) 

3. Numerical analysis 

of poloidal and toroidal vectors: 
For the numerical analysis, a velocity field satisfying (2.4) can be written as a sum 

u = V x V  x r u + V  x r w .  

It follows that the velocity boundary condition (2.7) at the inner and outer bounding 
spherical surfaces becomes 

(3.1) 

= u = o .  
a2u - a(w/ r )  
ar2 ar 

The poloidal and toroidal fields, u and w,  and the temperature deviation, 0, are then 
expanded in terms of spherical harmonics and the radial functions satisfying the 
boundary conditions (see Zhang & Busse 1987), for example, 

u = C uzmn sin nx(r - ri)  Yr(O, $) eiUt, 
1 ,  12 

where the Yr(O,$)  are normalized such that the spherical surface integral 

(3.3) 

The method used by Zhang & Busse (1987) for determining the onset of convection 
involves iterations of the determinant of a complex matrix, which becomes increasingly 
difficult numerically as the dimension of the complex matrix becomes large. Several 
other methods, including the use of the standard NAG subroutine for the complex 
eigenvalue problem and explicit time-integration of the equations, were considered and 
discarded because they are ineffective and require too much computing time. An 
iterative method based on the Newton-Raphson scheme is adopted which appears 
particularly appropriate for the problem of convective instability with large rotation 
rate. For a given azimuthal wavenumber, Ekman number and Prandtl number, instead 
of solving for only the critical parameters - the Rayleigh number R and the frequency 
w - at the onset of convection, we iterate to obtain simultaneously the critical 
parameters R and w and the associated convection solution. A solution vector of 
convection can be written in the form 

v = (u ,  w,  O),  
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where the coefficients of the expansions of v ,  w, 0 are arranged as a one-dimensional 
array 

x = [ X J  = 1, . . . , K ]  = [u;, v:, v;, v;, . . . , w;, w:, w;, w", . . . , or,, o:, or,, o;, f . . ,I 
where K is a function of the truncation parameter Nt (Zhang & Busse 1987). Roughly 
speaking, the maximum 1 of spherical harmonics Y?(~ , I$ )  included in expansions like 
(3.3) is given by m + 2N,. We may set the real part of u l ,  v ia = X ,  = 1, and the imaginary 
part v i  = X ,  = 0, because of the two freedoms of the linear system: amplitude and 
azimuthal phase. For a solution vector with dimension K,  the Galerkin spectral method 
results in K linear real equations for given E, Pr and m, 

=f,(R,w,X, , j  = 3, ..., K ) ,  i = 1, ..., K.  

Given an arbitrary initial vector X o  and a guess for Ro and wo, we can iterate this linear 
system in the following way: 

X;+l = 1,- 2 &(X"), i =  3 ,..., K,  (3' 

(3.4) 

where the superscript n denotes the nth iteration, and 

The derivatives af,/i3Xj are evaluated analytically at Xn. Typically, with an arbitrary 
initial Xo and reasonable guesses for Ro and wo, a convection solution converges after 
about four iterations; that is 

where E is in this paper. 

4. Classification of the convection mode 
We first summarize the classification of convection modes in rotating spherical 

systems in the parameter space of the problem suggested by our numerical analysis. 
Consider a rotating spherical system characterized by a fixed rotation rate and 
viscosity, and imagine that the thermal diffusivity, K, is increased from a small value 
( K  < Y, Pr % 1) to an asymptotically large value (K 9 I/,  Pr << 1) while keeping all other 
parameters of the system unchanged. It is found that four different forms of convection 
can be observed in the following sequence: 
(I) A columnar convection mode with rolls aligning with the axis of rotation and 
intercepting the outer spherical surface at middle latitudes ; the azimuthal lengthscale 
of the roll is much shorter than the radial lengthscale (Busse 1970; see also-Zhang 
1991). 
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(11) A spiralling columnar convection mode in the form of eastward-spiralling drifting 
columnar rolls ; as a consequence, the azimuthal lengthscale becomes comparable with 
the radial scale (Zhang 1992). 
(111) An equatorially trapped PoincarC convection mode travelling in the eastward 
direction. In the leading order, the frequency of convection is given by 

where m is the azimuthal wavenumber, and 1 is an index for the solution of PoincarC 
modes (see Zhang 1933 for details) that is set to 1 = m + 2 in this paper. Cylindrical 
coordinates, (s, g5, z) ,  with the axis of rotation at s = 0, are used in (4.2E(4.4). The 
coefficients are 

a+ = 

b =  

(IV) An equatorially 
In the leading order, 

(21- 1>(21+Zw-2w) (21-1)(21+Zw-4) 
, as = 8(1-I) ’ 8(1-1) 

(1-2) d =  (21- 1) w c=- (21- 1)(1-2)w2 
4(0-2) (2 - 61) ’ 2 -  

trapped PoincarC mode, but travelling in the westward direction. 
the frequency of convection is 

g + = -  ”(  I + -  [:;:;]), 
1 (4.5) 

and the corresponding velocity of convection can be obtained from (4.2k(4.4) by 
replacing w- with w+. The equatorially trapped convection mode 111 was first suggested 
by Zhang & Busse (1987) but without recognizing that it corresponds to the mode of 
the PoincarC equation. The w+ convection mode, which becomes the most unstable 
mode at even lower Prandtl numbers, was found after a pair of the equatorially trapped 
waves (w’ and w-) had been obtained in the PoincarC equation for this particular class 
(Zhang 1993). 

The link between an oscillation mode of the Poincare equation and a convection 
mode is established mainly based on the facts that (i) there is very little difference 
between the frequencies of the convection mode and the Poincare oscillation mode, (ii) 
the form of the convection mode and that of the Poincare oscillation mode are almost 
identical, and (iii) a good agreement between the perturbation analysis on the basis of 
the Poincare mode and the full numerical analysis is reached. 

While transition from mode I to mode I1 is gradual (Zhang 1992), the value of the 
Prandtl number at which the preferred convection is changed from mode I1 to I11 is 
dependent on the Ekman number. For example, our numerical analysis indicates the 
following approximate regions of the Prandtl number at E = occupied by each of 
the four forms of convection: rn > Pr > 1, mode I;  1 > Pr > 0.05, mode 11; 
0.05 > Pr > 0.002, mode 111; 0.002 > Pr 3 0, mode IV. A complete determination of 
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the different regions in the parameter space of the problem requires a theory for the 
columnar convection that is valid not only for small Ekman numbers but also for finite 
azimuthal wavenumbers, which is still not available. 

It should be pointed out that there are fundamental differences between the 
columnar convection modes (I and 11) and the Poincare convection modes (I11 and IV). 
These may be readily seen from the equation of vorticity obtained from (2.3) in the 
limit 7 = 0: 

2 k - U ~  = iwV x u- RUO x r +  EV'V x u. 

Note that the Proudman--Taylor condition k.  Vu = 0 cannot be satisfied because of the 
boundary condition: a constraint that needs to be broken in order that convection 
takes place (Busse 1982). Jn the case of the columnar convection modes (I and II), the 
frictional forces play a key role in breaking the constraint of rotation, 

( 4 4  

12k.Vul - IEV2V x u I .  (4.7) 

The scale of convection rolls thus decreases rapidly with increasing rate of rotation, 
m - E-i (Roberts 1968). In the case of the Poincare convection modes (I11 and IV), 
the frictional forces play a secondary role in breaking the constraint of rotation. The 
primary balance in (4.6) is 

12k-Vul - lioV x U I  (4.8) 

and, therefore, a small scale of convection cells is not necessarily required. In terms of 
the speed of wave propagation, the columnar convection modes (1 and 11) are slow and 
the Poincare convection modes (I11 and IV) are fast. 

5. Perturbation analysis 
The fact that, in the present case, inertial oscillation is weakly coupled with 

convection, and the relevant solutions of the PoincarC equation are fairly simple, 
suggests an analytical perturbation approach. We can assume the following expansion : 

u = u+u,, P = P,+P,, 0 = O,+wl, 

where ul, & and w1 represent small perturbations from the solutions of the PoincarC 
equation for the limit E = 0, which are denoted by U, Po and 0". The requirement for 
the validity of the above expansion is 

Em2 -+ on. (5.1) 
If this condition is not satisfied, the viscous term in (4.6) would be of the same order 
as the other terms, which is the case for slow columnar convection (Roberts 1968), 
where w - Ei and m - E-4. For the Poincare convection mode, condition (5.1) may be 
expressed as 

In contrast to previous analysis, the expansion is not restricted to asymptotically large 
wavenumber m. Substituting the expansion into (2.3)-(2.5), the zeroth order of the 
perturbation problem yields 

(5.3) 

v .u= 0, (5.4) 

where Usatisfies the inviscid boundary condition U, = 0. Equations (5.3) and (5.4) can 
be combined to form the Poincare equation for inertial oscillation (Greenspan 1968). 

Emi< 1. (5.2) 

iw, U+2k x U+VPo = 0, 
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The solutions of the Poincark equation for various classes and different symmetries in 
the form of equatorially trapped waves have recently been studied in detail by Zhang 
(1993). However, it should be emphasized that U does not satisfy the stress-free 
boundary condition : 

=k 0 at r = r,. a w  l r )  a(u,lr) 
+ + = O ' T  

The next order of the perturbation in the limit 7 = 0 gives rise to 

iw, u1 + 2k x u, + VP, = RrO + EV2( U+ ub) - iw, U, (5.5) 

(V2-iw,E-lPr)0 = - r - U ,  (5.6) 

v.u ,  = 0, (5.7) 

where u, = ui + ub, ui is the perturbation of the interior flow and ub is the boundary 
flow associated with the Ekman layer, which is non-zero only in the vicinity of the outer 
spherical boundary surface. While ui is a small perturbation relative to the zeroth-order 
velocity U, the boundary flow ub has to be large enough so that (ub+ U )  satisfies the 
stress-free boundary condition. It will be shown that the Ekman boundary layer plays 
an essential role in the convective instability problem associated with the Poincark 
mode, but the precise structure of the boundary-layer flow is not needed for the linear 
instability problem with the stress-free boundary condition. 

Denote the complex conjugate of U by U*,  which also satisfies V. U* = 0 and the 
boundary condition U,* = 0, multiply (5.5) by U* and integrate over the volume of the 
sphere. The left-hand side of (5.5) then becomes 

lv U*.(iw, u1 + 2k x u, + VP,) dV = u, - (iw, U* -2k x U*) dV, (5  * 8) 

U* * VP, d V = 4 U,* dS = 0 s, where we use 

and J8dS represents the surface integral over the outer spherical surface. But the 
complex-conjugate velocity U* satisfies the following equation : 

(5.9) iw, U* -2k x U* = QP;. 

It is then readily shown that the integral given by (5.8) vanishes. It follows that the 
solvability conditions, where the real part corresponds to the critical Rayleigh number 
for the onset of convection and the imaginary part gives rise to the correction for 
frequency, can be expressed as 

(5.lOj 

Iq'ddV. (5.11) 

Note that Uis a function of w+ or w- defined by (4.1 j and (4.5). The physically observed 
PoincarP: convection mode is then related to the most unstable mode of convective 
instability, 

&(in, w', w-, Pr, E )  = Min. 
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That is, for given values of E and Pr, the Rayleigh numbers are calculated with 
different wavenumbers m and different modes of the Poincark equation to obtain the 
lowest Rayleigh number R,. Convection in the form of inertial oscillation, described by 
the Poincart equation and weakly modified by the effects of viscosity, will then be 
sustained when the Rayleigh number R is slightly greater than R,, assuming that the 
corresponding bifurcation is supercritical ; the system is, however, in a motionless 
conducting state when R < R,. A complete solution of convection in a spherical fluid 
system with given E and Pr may be represented in the leading order by 

(Rc, m, u, w, + Wl,@), 
where U and oo are the solutions of the PoincarC equation given by (4.1)-(4.5), and 
Rc, m ,  w1 can be determined when temperature 0, the solution of (5.6), is obtained. In 
the limit of Pvm-t 4 E, the whole problem can be fully solved analytically in closed 
form; otherwise temperature 0 in (5.6) has to be determined approximately by an 
analytical expression. 

5.1. Analysis with the limit PrmG 4 E 
In the limit Prm-g < E, the second term in the left-hand side of (5.6) can be neglected 
and temperature 0 is then decomposed into two parts: 

0 = @&, 8, $, t )  + T(r, 0, (5.12) 

where T satisfies VzT = 0, but with an inhomogeneous boundary condition, and 0, 
satisfies an inhomogeneous differential equation, but with a homogeneous boundary 
condition. Substituting the decomposition into (5.6), we obtain an equation for 0,: 

V20,  = - i[a, s ~ + ~  + (d+ b) smzz + csm] ei(m++wot) (5.13) 

which permits solutions of the form 

0, = i(A~m+4 + &m+2 + Cz2p+2) ei(m++wot). (5.14) 

The constants A, B, C can be determined by comparing both sides of (5.6) after 
substitution, 

d+b C=- B=- 
81 161(1-1)' 4(1- 1)' 4(1- 1)' 

C a (d+b) A = S -  

where, as a reminder, 1 = m+2. The boundary condition for T is then given by 

T( 1,8,$, t )  = - i(A sinz+, 8 + B sinz 8+ $2 sinz (28) sinz-2 8 1 ei(m,++*Jot) . (5.15) 

The exact solution of V2T = 0 satisfying the boundary condition (5.15) has the form 

(5.16) 

where 
symmetry 

leads to & = O  if k = n z + l , m + 3 .  

Some manipulations then give 

are coefficients and Pk(cosO) is the Legendre function. The equatorial 

T(r, 8, $) = T(r, 7c - 6, $1 

T(s, $, z ,  t )  = - i[B, sm + B, smz2 + B, sm+, + B, smz4 + B, sm+,z2 + B6 sm+*] ei(m@+wot), 

(5.17) 
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where the coefficients are a function of A ,  B, C and m: 

C-2A-B 3A-3C +- B1 = (A+B)+ 2m+3 (2m+3)(2m+5)' 

2m+2 
B. - [2m(C- 2A - B) + C - 8 A  - 7 4 ,  

- (2m+ 3)(2m + 7)  

-1  
B -  [2m( C - 2A - B) + C - 8 A  - 7 4 ,  

-(2m+3)(2m+7) 

[(2m+5)(2m+l)+3] 
(2m + 5)  (2m + 7)  B, = ( A  - C ) ,  

(- 12m - 24) 
B5 = ( A  - C),  (2m+5)(2m+7) 

J 
B -  ( A  - C ) .  

- (2m+5)(2m+7) 

The exact solution of (5.6) in complex form is 

0 = - i[ B, sm + B, smz2 + (B ,  - B) sm+' + B, smz4 + (B, - C )  snzi2z2 

+(Be-A)  ~ ~ + ~ ] e ~ ( ~ ~ + ~ ~ ~ ) .  (5.18) 

5.2. The importance of the Ekman layer 
If the effects of the Ekman boundary layer are neglected in the perturbation analysis, 
the stability analysis is then connected with the evaluation of three complex integrals 
in (5.10) and (5.11) resulting from the solvability condition. It is straightforward to 
show that the integral 

HB = U*-rOdV= U.rO*dV. (5.19) 1, i. 
From (5.6) and 0 given by (5.18), it can be shown in the limit Prm-i % E that 

2n+2nn!(2j- l)!! 
"%' = (2n+2j+3)!! ' 

where In,j is defined as 

and the coefficients are 

El = U ,  Bl + c(B3 - B), 

E3 = a,(B3 - B) + c(Be -A) ,  

E5 = a,(B,-C)+(d+6)(B6-A), 

E, = a, B, + (d+ b) (B, - B) + (B, - C )  C, 

E4 = a, B4 + (d+ b) (B,  - C ) ,  

E6 = a,(B,-A),  
E, = (d+  b) B, + cB,, 

E9 = B1c, 

E, = cB, + (d+ b) B,, 

El, = B,(d+b). 
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One unexpected result, however, is the integral associated with the term for internal 
viscous dissipations for the solvability conditions (5.10) and (5.1 1): 

= F,[(a, + a+) M + h + (2m + 3) c], 

where F, is a function of wavenumber m. By using the expressions for the coefficients 
a,, a+, b, c in $4 for either the w+ or o- modes, we found that this integral is identically 
zero, In this connection, it is worth mentioning that 

J, Uz(w'). U,(w-) dV = 0 if m = k (5.20) 

as proved by Greenspan (1968). Here we found another interesting mathematical 
property of the solutions of the Poincare equation: the velocity U* for the class of the 
simplest axial structure with equatorial symmetry ((4.lt(4.5)) is orthogonal to V2 U :  

~*U~(~~ ' ) .V 'U~(w' )dV= 0, lu Uz(o-)-V2Uk(w-)dV= 0 if m = k (5.21) 

for any non-zero azimuthal wavenumber M .  Though the mathematical implication of 
(5.21) is still not clear, physically it implies that convection in this case is driven by the 
boundary stresses resulting from the inviscid boundary condition which does not 
satisfy the condition of the stress-free boundary. The Ekman boundary layers are 
therefore of essential importance in determining the stability properties of the problem 
even when the stress-free boundary conditions are assumed. 

5.3 .  Analysis with the Ekman layer 
In contrast to the analysis of Ekman boundary layers with an established flow 
(Greenspan 1969), the Ekman layers in the problem of rotating convection are formed 
at the same time as any motion takes place. In general, it is difficult to solve the exact 
structure of the boundary layer in convective rotating spherical systems. Fortunately, 
it is found that specification of the exact structure of the boundary layers can be 
avoided, in the leading order, by taking the boundary condition into account in a 
surface integral. In other words, with regard to the onset of convection with the stress- 
free boundary condition (2.7), the effects of viscosity in the Ekman boundary layer can 
be included to the extent that is possible without involving a detailed boundary-layer 
theory. The boundary flow u (here the subscript h for u is dropped) satisfies the 
following condition : 

(5.22) 

on the outer spherical surface. The real part of the solvability condition (5.10) in the 
limit Prm-i 4 E becomes 

- R / E  IV012 d V  = U**V2( U+ ub) dV, (5.23) s, S* 
the right-hand side of which in the leading order is 

8 

(5.24) 
FLM 268 
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Using the stress-free boundary condition, the last term involving the integral over the 
outer spherical surface vanishes. In deriving the above integral, we have used the fact 
that there are two different scales: the larger one is the radial half-width of the 
equatorial waveguide tube, L = l/m, and the smaller one is the thickness of the Ekman 
boundary layer Ei. For the Poincark convection modes, the radial half-width of the 
equatorial waveguide tube always satisfies L % Ei, a result of the condition Em' 2 < < 1 for 
the validity of the perturbation expansion. The expression for the integral Hb in (5.24) 
can be further simplified by using the orthogonal condition between U* and V'U: 

where only one surface integral is involved for Hb. The corresponding explicit formula 
for (5.25) is 

Hb = [a~( l -2) ]~_l ,o+[(21-4)aqb+(2~-~)~(a , -~d) l~-z , l  

+ [(2l-6)agcI~- , , ,+ [(21-6)bc+(l-4)cZ1JI-,,, 
+[(l-2)  b2+(2l-6)bc]q-,,2+[(l-4)czIq-3,o 

+[(l-2)(a,-d)Z]4-1, 1 + ~ ~ ~ ~ - 4 ~ ~ ~ ~ , - ~ ~ 1 ~ - ' , 2 + ~ ~ ~ - ~ ~ ~ 2 1 ~ - 3 , 3 ~  

where Jn,j is defined as 
2n+27cn!(2j- l)!!  

J f l J  = (2n+2j+1)!! . 

The Rayleigh number R in (5.10) may then be expressed as 

where both HB and Hb are analytical functions of the azimuthal wavenumber m. 
Furthermore, HB and Hb are pure real numbers, equation (5.1 1) indicating that 

(5.27) 

The complete convection solution in the leading order in the limit Prm-i 4 E is thus 
represented by R, by minimizing R in (5.26) over different modes and wavenumbers 
with the relevant U and w in $4 and with 0 given by (5.18). The analytical results agree 
satisfactorily with the full numerical analysis and will be discussed in $6. 

5.4. Analysis without the limit Prmf < E 

Relaxing the condition Prm-3 < E has two consequences. First, the effects of the 
Prandtl number are to cause a shift of the azimuthal phases between 0 and U,, and as 
a result, a closed form of solutions for the heat equation (5.6) cannot be obtained. 
Secondly, a non-zero correction w1 to the frequency of inertial waves is expected 
because HB becomes complex. We first solve (5.6), with which the relevant integrals in 
(5.10) and (5.11) for the critical Rayleigh number of convective instability can be 
evaluated, and then discuss the frequency modification. In order to study the 
dependence of the character of the system on the Prandtl number, such as the switch 
from the w+ convection mode to the w- mode, we choose to expand the total 
temperature 0 in spherical Bessel functions 

N 

0 = C @lmn Y,"(e, $)jl(Bln r )  eiwut, (5.28) 
1 ,  n 
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where 1 = m, m + 2 (see the discussion below) and n = 1,2, . . . , N ,  N being a truncation 
parameter; Olmn is a complex coefficient and B,, is chosen such that 

j[(Bln) = 0,n = 1,2, .. ., N .  

Yy(O,q5) is normalized in the same way as discussed in g3 .  Substituting the above 
expression into the heat equation, multiplying it by [ Y2"(8,4)]*jL(B,, r),  and integrating 
over the sphere gives 

z;, = ~ i n y m + ~ t ( y )  dy j (1 -xz)>"'2P~(x)dx. 
" 0  -1 

Explicit analytical expressions can be found for all the above integrals. It is essential 
to observe that the integral involving the associated Legendre function Py(x )  in Zfn has 
the following properties : 

1 

(1 - x2))"'2PT(x) dx = 0 if I =l m (5.30) il, 
and (5.31) 

In addition, with the recurrence relation the other two integrals with Py(x )  in Zin and 
Z,Z, can be expressed in terms of the following integrals: 

1 

(1 - x')"/2Ppz"_2(x) dx; /:1(1 -x2)m'2Py(x)dx;  /-1(1 -x2)m'2PT",2(x)dx. 

The last integral is zero because 13 m and the first one is non-zero only if 1 = m+2. 
As a consequence, there are only the two relevant integrals related to the Bessel 
function j , (y )  which can be also expressed analytically, 

J;nYm+%n(Y) dv = Blmn+2jm+1(B1,), 

[2n~7fi+~m(v) dv = K~+~[B,,.L+,(B,,) - ~ L + ~ ( u I .  

Each coefficient Olmn of expansion (5.28) is therefore an explicit analytical function of 
E, Pr and m. It follows that the analytical expression for the Rayleigh number R in 
(5.10) is 

(5.32) 

where H,, is given by (5.25), and 1 = m, m + 2  and n = 1,2, .  . ., N .  Every term in (5.32) 
is evaluated analytically and the size of N is chosen in accordance with the desired 

8-2 
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accuracy. The analytical expression for the correction of the oscillation frequency is 
given by 

(5.33) 

(5.34) 

We observe that the frequency of the convection may be expressed as 

Q = wn( 1 - h), 

where h is a small positive constant: the effect of the Prandtl number is always to 
reduce the speed of the travelling wave. 

6. Comparison: numerical versus analytical 
Three areas of comparison are focused on. First, the critical parameters for the onset 

of convection, such as the Rayleigh number and oscillation frequency, are examined 
for several typical cases. At the same time, the accuracies of the numerical analysis and 
the approximation by (5.32) are discussed. Secondly, the detailed patterns of 
convection, the velocity and temperature fields, are compared for the numerical 
solution and the analytical solution at exactly the same parameters. Finally, the 
dependence of convection on the physical parameters, in particular the Prandtl 
number, is studied. 

Convergence and accuracy are of importance, in particular, for comparison of the 
results obtained with completely different approaches. We observe from table 1 that 
the numerical solutions are well converged and the accuracy of our numerical analysis 
is better than 1 %. It is also fortunate that the exact value for R given by (5.32) exists 
in the limit Pr = 0 (equation (5.26)), so that the accuracy of approximation with finite 
N in (5.32) can be checked with the exact Rayleigh number R given by (5.26). This is 
shown in table 2 in which the exact values of the critical Rayleigh number and the 
approximate values at different truncation levels can be compared. It indicates a fast 
convergence, and only three radial Bessel functions in the expansion (5.28) are needed 
to produce a better than 1 YO accuracy of approximation. 

Also displayed in table 1 are the critical parameters for different wavenumbers, both 
numerical and analytical, for the onset of convection in several typical cases. The case 
of Pv = 0 represents the limit Pr m-i < E where the second term in (5.6) is neglected. For 
E = and Pr = 0.02, the numerical analysis for a thick spherical shell with 7 = 0.2 
gives rise to the most unstable mode, characterized by the azimuthal wavenumber 
m = 7, the critical Rayleigh number R,  = 24.41 and frequency (o = -0.2536. The 
perturbation analysis on the basis of the Poincare modes not only closely predicts the 
critical Rayleigh number and frequency for a spherical shell, but also gives the same 
azimuthal wavenumber for the most unstable mode. The minimization of R given by 
(5.32) shows exactly the same wavenumber m = 7 for the most unstable mode (see also 
figure 4a) with R, = 25.68 and w = -0.2548, where the correction of frequency by 
(5.33) has been taken into account. Much larger Rayleigh numbers, suggested by both 
the numerical and analytical results, are required in this case to excite either the 
columnar convection modes or the w+ Poincark mode (mode IV). However, the w+ 
PoincarC mode is always preferred when P r m f  + E is satisfied, again suggested by 
both the numerical and analytical analysis. An example for E = is also shown in 
table 2, where both the w+ and w- convection modes are presented for the case Pr = 0. 
The correction for the inertial oscillation, w, is zero since the radial flow r/, that carries 
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E Pr Nt m R w 

o 14 2 1.653 1.2316 
numerical 0 16 2 1.660 1.2316 

1 1 0 - 4  o 18 2 1.664 1.2316 
analytical 0 2 1.260 1.2319 

numerical 

- 

(10-4 0 14 2 1.942 -0.2305 
0 16 2 1.955 -0.2305 1;;:: 0 I 8  2 1.962 -0.2305 

analytical 0 2 1.646 -0.2319 

0.02 14 7 22.55 -0.2538 
10-5 0.02 16 7 23.00 -0.2537 
10-5 0.02 20 7 23.63 -0.2537 
10-5 0.02 22 7 23.85 -0.2531 
10-5 0.02 24 7 24.04 -0.2537 
10-5 0.02 28 1 24.31 -0.2537 
10-5 0.02 30 1 24.41 -0.2537 
10-5 0.02 24 7 24.39* -0.2535* 
10-5 0.02 28 7 24.58* -0.2535* 

~ 

r 
I 

~ 7 25.68 -0.2548 

numerical 

analytical 0.02 

TABLE 1. Examples of the convergence behaviour of full numerical solutions for 7 = 0.2 or 7 = 0.35, 
marked with an asterisk. The corresponding results from perturbation analysis are also presented for 
comparison 

Approximate 
~~ 

Exact N = 2  N = 3  N = 4  N = 6  

R, = 1.2595, w+ R, = 1.2629 1.2601 1.2597 1.2596 
R, = 1.6462, OJ- R, = 1,6507 1.6470 1.6464 1.6462 

Pr = 0 for m = 2, where w+ = 1.2319, w = -0.2319 
TABLE 2. A comparison between the exact values of R, and those obtained by approximation at 

E = 

away heat and the temperature 0 have the same phase. The numerical analysis 
indicates that large-scale convection with m = 2 is preferred and that the Rayleigh 
number increases with increasing azimuthal wavenumber; the analytical formula given 
by (5.26) shows the same behaviour, but with R(m = 2) slightly larger than R(m = 1). 
Even though the effects due to the presence of the inner core cannot be completely 
neglected owing to large scale motions, the numerical and analytical results are still in 
good quantitative agreement. 

Convection patterns at E = lop5, m = 7 ,  7 = 0.2 and Pr = 0.02 are illustrated in 
figure 1, where the numerical results are shown on the left-hand side of the figure and 
the analytical results are on the right-hand side. A dashed circle for the analytical 
solution indicates the position of the inner sphere which is only included in the 
numerical analysis. A frame moving with the phase speed of azimuthally travelling 
waves is used to illustrate the stationary pattern. It is worth mentioning that the phases 
of solution are arbitrary because of the homogeneous boundary condition: if u(Q) is a 
solution, u(Q + Qo) is also a solution, Qo being a constant. There is very little noticeable 
difference between the patterns of convection obtained from the numerical and 
analytical methods. Convective motions are trapped in the equatorial-waveguide tube 
with characteristic latitudinal half-width ( 2 / m ) ~  and radial half-width (1 /m). As a 
consequence, very little influence can be exerted on this type of convection by the 
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U$, z=o  u p  $ = O  0, z=o 

FIGURE 1. (a)  Contours of ud at the equatorial plane, (b) contours of uQ in a meridional plane and ( c )  
contours of 0 at the equatorial plane for E = 10- ', Pr = 0.02 and m = 7. The numerical results are 
on the left-hand side and the analytical results are on the right-hand side. The critical parameters are 
R, = 25.68 and w = -0.2548 for the analytical solution, and R, = 24.41 and w = -0.2536 for the 
numerical solution. 

0, $ = O  
w' mode 

U$, g=o 
w mode 

FIGURE 2. (a) Contours of 0 in a meridional plane for the w- convection mode and (6) contours 
of ub for the 0- convection mode at E = lo-', Pr = 0 (see table 1 for details). 

presence of a small inner sphere. A solution with E = M = 7, 7 = 0.35 and 
Pr = 0.02 is included in table 1 to demonstrate the weak effects of the inner core. While 
the case with 7 = 0.2 gives rise to R, = 24.41 and w = -0.2537, a larger inner core with 
7 = 0.35 gives R, = 24.58 and w = -0.2535. 

This is, of course, not true if a large-scale convection mode is preferred. The most 
unstable mode with the small Prandtl numbers (Prm-i + E )  is characterized by a large 
scale; the preferred modes always correspond to the w+ Poincari mode, which 
propagates in the westward direction. An example at E = lop4 for both the w+ and w- 
convection modes is presented in figure 2. In order to satisfy the boundary condition 
at the inner spherical surface, there are clearly noticeable differences between the 
numerical solution for a spherical shell and the analytical solution for a sphere. This 
is illustrated in figure 2 (a) (depicting the temperature field in a meridional plane) by 
comparing the numerical result on the left-hand side to the analytical solution on the 
right-hand side, where the temperature of the numerical solution in the vicinity of the 
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FIGURE 3. Instability curves at E = lo-' shown for the numerical results (solid lines) and the analytical 
results (dashed lines). (a) The oscillation frequency and (b) the Rayleigh number are plotted against 
the Prandtl number. 

inner sphere has to be changed to satisfy the boundary condition. The agreement 
between the analytical and numerical analysis, however, is still quite satisfactory for 
the global-scale convection, owing largely to the rapid decay of the convection from the 
outer spherical surface as clearly shown in figure 2(b). 

On the basis of (4.1)-(4.5), (5.26) and (5.32k(5.33), the complete convection 
solutions of the PoincarC modes can be obtained for any values of the parameters of 
the problem, while it becomes increasingly difficult to obtain an accurate numerical 
solution for E < Figure 3 shows the dependence of the critical parameters on the 
Prandtl number at E =  for both the numerical and analytical results with the 
azimuthal wavenumber m = 2. An excellent agreement between the perturbation and 
numerical results is found in the frequency curves in figure 3 (a); the Rayleigh number 
curves show the same tendency but with about 15 % discrepancy. The discrepancy for 
this large-scale mode is mainly caused by the difference between the spherical shell of 
the numerical results and the full sphere of the analytical results. For the localized 
solutions of m = 7 ,  this effect is much smaller and the discrepancy is therefore much 
smaller. Both analyses, however, suggest the same dependence: the w+ mode of the 
large scale becomes the preferred mode with sufficiently small Prandtl numbers (see 
also table 1). 

Instability curves resulting from (5.32) are shown in figure 4(a,  b) for E = lop5 and 
for different values of the Prandtl numbers. For all these Prandtl numbers, the o- 

convection modes are always preferred. An example for the w+ convection mode at 
Pr = 0.01 is also shown in figure 4(a) on the dashed curve. A particular example with 
E = and Pr = 0.02, which is studied in detail, has already been discussed and 
shown in table 1. According to both the numerical and analytical analyses, the 
azimuthal wavenumber for the most unstable mode is increased with increasing 
Prandtl number, even though the friction force does not enter the primary force 
balance in (4.6). Finally, it is of importance to note that in the perturbation theory 
presented in this paper an asymptotically large wavenumber is not required, in contrast 
to the previous perturbation theories of columnar modes. Moreover, the wavenumbers 
for the most unstable Poincare convection modes are not always asymptotically large 
in a rapidly rotating fluid sphere. 
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FIGURE 4. Instability curves (a) for E = 1UP and (b) for E = shown for different Prandtl 
numbers. The circle indicates the most unstable mode. 

7. Concluding remarks 
The most significant finding reported in this paper is the discovery of the link 

between convective instability and inertial oscillation in rotating spherical fluid 
systems, which has important mutual implications for both problems. On the one 
hand, relatively simple solutions of the PoincarC equation shed light on rotating 
spherical convection: this not only enables us to obtain analytical solutions of the 
relevant convection, but also further studies of the weakly nonlinear convection 
become feasible because of the availability of simple linear solutions. On the other 
hand, thermal instability provides a mechanism by which particular inertial oscillation 
modes can be excited and sustained, and provides a way to select an inertial mode by 
the mechanism of convective instability. 

We have only investigated convection with stress-free boundary conditions, which 
are unrealistic when applied to many real systems such as the Earth’s liquid core. The 
main feature of the equatorially trapped convection is that its velocity amplitude peaks 
at the outer spherical boundary. However, the velocity of convection with the rigid 
boundary conditions must completely vanish on the outer spherical boundary. 
Whether or not the non-slip boundary condition has significant influences on the form 
of convection described in this paper remains unclear. A proper Ekman layer with the 
non-slip condition, as pointed out by one of the referees, may provide the adjustment 
across the Ekman boundary layer without substantially affecting the structure of 
interior convective flow. This is perhaps the most important issue of the problem which 
will be addressed in the future. 

This work is supported by the SERC grant GR/H55437 and was written when I was 
at Isaac Newton Institute for Mathematical Sciences, Cambridge, 1992. I would like to 
thank an anonymous reviewer for his constructive comments. 
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